Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 24(1): 298, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443829

ABSTRACT

BACKGROUND: The surge in the utilization of CT scans for COVID-19 diagnosis and monitoring during the pandemic is undeniable. This increase has brought to the forefront concerns about the potential long-term health consequences, especially radiation-induced cancer risk. This study aimed to quantify the potential cancer risk associated with CT scans performed for COVID-19 detection. METHODS: In this cross-sectional study data from a total of 561 patients, who were referred to the radiology center at Imam Hossein Hospital in Shahroud, was collected. CT scan reports were categorized into three groups based on the radiologist's interpretation. The BEIR VII model was employed to estimate the risk of radiation-induced cancer. RESULTS: Among the 561 patients, 299 (53.3%) were males and the average age of the patients was 49.61 ± 18.73 years. Of the CT scans, 408 (72.7%) were reported as normal. The average age of patients with normal, abnormal, and potentially abnormal CT scans was 47.57 ± 19.06, 54.80 ± 16.70, and 58.14 ± 16.60 years, respectively (p-value < 0.001). The average effective dose was 1.89 ± 0.21 mSv, with 1.76 ± 0.11 mSv for males and 2.05 ± 0.29 mSv for females (p-value < 0.001). The average risk of lung cancer was 3.84 ± 1.19 and 9.73 ± 3.27 cases per 100,000 patients for males and females, respectively. The average LAR for all cancer types was 10.30 ± 6.03 cases per 100,000 patients. CONCLUSIONS: This study highlights the critical issue of increased CT scan usage for COVID-19 diagnosis and the potential long-term consequences, especially the risk of cancer incidence. Healthcare policies should be prepared to address this potential rise in cancer incidence and the utilization of CT scans should be restricted to cases where laboratory tests are not readily available or when clinical symptoms are severe.


Subject(s)
COVID-19 , Neoplasms, Radiation-Induced , Female , Male , Humans , Adult , Middle Aged , Aged , Cross-Sectional Studies , COVID-19 Testing , Neoplasms, Radiation-Induced/diagnosis , Neoplasms, Radiation-Induced/epidemiology , Neoplasms, Radiation-Induced/etiology , COVID-19/epidemiology , Tomography, X-Ray Computed/adverse effects , Radiation, Ionizing
2.
In Vitro Cell Dev Biol Anim ; 57(4): 468-476, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33770338

ABSTRACT

Human adipose tissue-derived mesenchymal stem cells (hADSCs) due to easy extraction, relative abundance, in vitro expansion and differentiation potential, frozen storage capability, and ability to secrete cytokines, compared to other stem cells, are appropriate candidate in regenerative medicine. Extremely low-frequency electromagnetic fields (ELF-EMF) and betaine are two safe factors in bone lesions repair. This study was designed to assess the osteogenic differentiation potential of these factors on hADSCs. The samples were collected from women undergoing liposuction after obtaining written consent. The hADSCs were extracted and treated with osteogenesis differentiation medium (OD) as the positive control, with OD and betaine (BET group), with OD and EMF (EMF group), and with OD and betaine and EMF (BET+EMF group) for 21 d; the negative control consisted of cells without treatment. Betaine 10 mM and EMF with 50-Hz frequency, 1-mT intensity (8 h daily), and in the form of sinus wave were used. Osteogenic differentiation was evaluated by Alizarin Red staining, alkaline phosphatase activity, calcium deposition, and real-time PCR. A significant increase in calcium deposition in the BET+EMF group was observed compared to the other groups. The activity of alkaline phosphatase in the positive control and BET groups was increased significantly compared to EMF and BET + EMF groups and a significant increase of this enzyme activity in the BET + EMF compared to EMF group was observed. The expression of RUNX2 and OCN genes in the EMF-treated groups were significantly reduced compared to the non-EMF-treated groups, and BET+EMF showed a significant increase of RUNX2 gene expression as compared the EMF group. The ELF-EMF leads to a decrease in the osteogenic differentiation and the expression RUNX2 and OCN genes in hADSCs. But osteogenic differentiation and RUNX2 gene expression were increased post-induction by betaine. The synergic effect of betaine and EMF on the osteogenic differentiation and related genes expression of hADSCs was higher than EMF.


Subject(s)
Betaine/pharmacology , Cell Differentiation/genetics , Electromagnetic Fields , Osteogenesis/genetics , Alkaline Phosphatase/genetics , Cell Differentiation/drug effects , Cell Differentiation/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cells, Cultured , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/radiation effects , Osteogenesis/drug effects , Osteogenesis/radiation effects
3.
Iran J Child Neurol ; 14(2): 87-92, 2020.
Article in English | MEDLINE | ID: mdl-32256627

ABSTRACT

Acute necrotizing encephalopathy of childhood (ANEC) is a disease, characterized by a respiratory or gastrointestinal infection, accompanied with fever, rapid alteration of consciousness, and seizures. The clinical characteristics of ANEC include acute encephalopathy following a viral infection, seizure, altered consciousness, and absence of cerebrospinal fluid (CSF) pleocytosis, with an occasional increase in the level of proteins. This disease is almost exclusively seen in previously healthy infants and children from East Asia. Serial magnetic resonance imaging (MRI) examinations have demonstrated symmetric lesions involving the thalami, brainstem, cerebellum, and white matter. ANEC has a poor prognosis with high morbidity and mortality rates. Herein, we present three cases of ANEC, who were referred to Bu-Ali Hospital of Ardabil, Iran during two weeks. Report of these three cases promoted the idea of an epidemic. The purpose of this case series was to raise the issue that ANEC may occur as an epidemic.

4.
Electron Physician ; 9(4): 4171-4179, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28607652

ABSTRACT

INTRODUCTION: In radiotherapy, megaelectron volt (MeV) electrons are employed for treatment of superficial cancers. Magnetic fields can be used for deflection and deformation of the electron flow. A magnetic field is composed of non-uniform permanent magnets. The primary electrons are not mono-energetic and completely parallel. Calculation of electron beam deflection requires using complex mathematical methods. In this study, a device was made to apply a magnetic field to an electron beam and the path of electrons was simulated in the magnetic field using finite element method. METHODS: A mini-applicator equipped with two neodymium permanent magnets was designed that enables tuning the distance between magnets. This device was placed in a standard applicator of Varian 2100 CD linear accelerator. The mini-applicator was simulated in CST Studio finite element software. Deflection angle and displacement of the electron beam was calculated after passing through the magnetic field. By determining a 2 to 5cm distance between two poles, various intensities of transverse magnetic field was created. The accelerator head was turned so that the deflected electrons became vertical to the water surface. To measure the displacement of the electron beam, EBT2 GafChromic films were employed. After being exposed, the films were scanned using HP G3010 reflection scanner and their optical density was extracted using programming in MATLAB environment. Displacement of the electron beam was compared with results of simulation after applying the magnetic field. RESULTS: Simulation results of the magnetic field showed good agreement with measured values. Maximum deflection angle for a 12 MeV beam was 32.9° and minimum deflection for 15 MeV was 12.1°. Measurement with the film showed precision of simulation in predicting the amount of displacement in the electron beam. CONCLUSION: A magnetic mini-applicator was made and simulated using finite element method. Deflection angle and displacement of electron beam were calculated. With the method used in this study, a good prediction of the path of high-energy electrons was made before they entered the body.

5.
Asian Pac J Cancer Prev ; 16(17): 7795-801, 2015.
Article in English | MEDLINE | ID: mdl-26625800

ABSTRACT

The aim of the present research was to establish primary characteristics of electron beams for a Varian 2100C/D linear accelerator with recently developed PRIMO Monte Carlo software and to verify relations between electron energy and dose distribution. To maintain conformity of simulated and measured dose curves within 1%/1mm, mean energy, Full Width at Half Maximum (FWHM) of energy and focal spot FWHM of initial beam were changed iteratively. Mean and most probable energies were extracted from validated phase spaces and compared with related empirical equation results. To explain the importance of correct estimation of primary energy on a clinical case, computed tomography images of a thorax phantom were imported in PRIMO. Dose distributions and dose volume histogram (DVH) curves were compared between validated and artificial cases with overestimated energy. Initial mean energies were obtained of 6.68, 9.73, 13.2 and 16.4 MeV for 6, 9, 12 and 15 nominal energies, respectively. Energy FWHM reduced with increase in energy. Three mm focal spot FWHM for 9 MeV and 4 mm for other energies made proper matches of simulated and measured profiles. In addition, the maximum difference of calculated mean electrons energy at the phantom surface with empirical equation was 2.2 percent. Finally, clear differences in DVH curves of validated and artificial energy were observed as heterogeneity indexes were 0.15 for 7.21 MeV and 0.25 for 6.68 MeV. The Monte Carlo model presented in PRIMO for Varian 2100 CD was precisely validated. IAEA polynomial equations estimated mean energy more accurately than a known linear one. Small displacement of R50 changed DVH curves and homogeneity indexes. PRIMO is a user-friendly software which has suitable capabilities to calculate dose distribution in water phantoms or computerized tomographic volumes accurately.


Subject(s)
Algorithms , Electrons/therapeutic use , Particle Accelerators , Radiosurgery/methods , Humans , Monte Carlo Method , Phantoms, Imaging , Radiosurgery/instrumentation , Radiotherapy Dosage , Software , Thorax , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...